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Verification of the Benjamin-Lighthill conjecture 
about steady water waves 
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Mathematical Institute, 24-29 St. Giles, Oxford OX1 3LB, UK 

(Received 25 July 1994 and in revised form 3 March 1995) 

The exact problem of steady periodic waves (Stokes waves) on the surface of an ideal 
liquid above a horizontal bottom is reconsidered in order to confirm a general property 
conjectured by Benjamin & Lighthill (1954). Specifically, in terms of parameters Y 

and s proportional respectively to the total-head and flow-force constants for steady 
flows, such waves are proved to realize points (Y, s) inside the region of the (Y, s)-plane 
that is bounded by the cusped curve representing all possible uniform streams. A 
corresponding attribute of steady periodic waves on the surface of an infinitely deep 
ideal liquid will also be demonstrated. The concluding discussion refers to steady water 
waves that are not periodic Stokes waves, and comments with reference to Appendix 
B on the significance of the flow-force invariant s in Hamiltonian representations of 
the steady-wave problem. 

1. Introduction 
It was first shown by Benjamin & Lighthill (1954: to be cited hereafter as BL) how 

the class of steady water waves in a horizontal open channel of uniform rectangular 
cross-section is representable by three constants of the wave motion. These parameters 
are Q the volume flux (per unit span), R the total head (Bernoulli constant), and S 
the flow force (horizontal momentum flux plus pressure force per unit span, divided 
by the density of water). Although over 40 years the BL characterization of steady 
water waves has become widely accepted as a cornerstone of the subject, a pivotal 
conjecture about the interdependent possible ranges of Q,  R and S still remains 
unproven. The issue will at last be settled in this paper. 

To preface the present analysis, the main points of BL's original treatment deserve 
to be recalled. For steady long waves of small amplitude, they showed that the 
water depth H ( X ) ,  a function of the horizontal coordinate X along the channel, is 
approximated by solutions of the equation 

tQ2 (g ) + g H 3  - 2RH2 + 2SH - Q2 = 0 

(BL, equation (20)).  In terms of dimensionless variables h = H / H ,  and x = X/H, ,  
where H, = (Q2/g)'I3 is the depth of the uniform stream that is critical for a given Q 
(i.e. velocity Q / H c  = (gHC)'l2),  this equation becomes 
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FIGURE 1. Possible values of ( r , s )  according to Benjamin & Lighthill (1954). The cusped curve is 

the locus of uniform streams, parameterized by F = t3/*. 

with 
C(h) = h3 - 3rh2 + 3sh - 1 (1.3) 

(BL, equation (23)), in which the two parameters are defined by 

Note that uniform streams have 

r = i(2h 3 + hk2), s = i (h2  + 2h-'), (1.5) 

so that r > 1 and s 2 1 with equality only in the case h = 1 of a critical stream. 
Parameterized by h > 0, the possible pairs of values ( r , s )  for uniform streams lie on 
the cusped curve shown in figure 1 (BL, figure 2 which has often been reproduced). 
On the upper branch of the cusp (h > 1) the respective uniform streams are subcritical 
(i.e. Froude number F = (Q2/gH3)1/2 = h-3/2 < l), and on the lower branch they are 
supercritical. For each point ( r , s )  on either branch, the cubic C(h) has a double root: 
i.e. C(h) = 0 and C'(h) = 0. 

Justified as a rational approximation for long waves of small amplitude, equation 
(1.2) recovers the class of solitary and periodic (cnoidal) waves first identified collec- 
tively by Korteweg & de Vries (1895). The approximation requires both r - 1 > 0 
and s - 1 > 0 to be small. Let hl > 1 and h2 < 1 denote the two positive values 
of h satisfying the first of (1.5) for a given r > 1. The respective values of s satisfy 
s1 > s2. If s = s2, C(h) is negative for h between its double root h2 and its greater 
root ^h = hT2 > 1. Then (1.2) has a non-trivial solution describing the solitary wave 
that can arise on the supercritical stream, having the same (rescaled) total head r and 
flow force s as the undisturbed stream. The height of the solitary wave at its crest is 
h. If s2 < s < s1, the discriminant of the cubic C is positive, and C(h) is negative for 
h between distinct roots h and h, where h2 < h < hl < h and h is now smaller than 

h 
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FIGURE 2. Solutions of (1.2) in phase-plane (h,h,), parameterized by s E [sz ,s~ ]  for a fixed r > 1. 

in the case s = s2 (cf. BL, figure 1). Then (1.2) has a periodic, cnoidal-wave solution 
with h = h at the troughs of the wave and h = ?I at the crests. The wave amplitude 
ĥ - h decreases continuously from its largest value hy2 - h2 to zero as s increases from 
s2 to s1. 

This range of possibilities, which is very well known, can best be illustrated by 
trajectories of solutions in the phase-plane (h, hx).  Figure 2 shows the solutions of (1.2) 
parameterized by s E [s2,sI] for fixed r > 1. When s = s2 the solution is a homoclinic 
orbit starting and ending at [h2,0]; and when s2 < s < s1 the solutions are periodic 
orbits around the centre [hl, 01. When s $! [sl, s2], or more generally whenever ( r ,  s) lies 
outside the cusped region shown in figure 1, (1.2) has no non-trivial solution bounded 
on R, nor any solution representing a uniform stream, which requires C’(h) = 0 as 
well as C(h) = 0. 

A similar range of possibilities for fixed s may evidently be parameterized by 
r E [r2,r1], where r1 and r2 < r1, respective to supercritical and subcritical uniform 
streams, are the two values of r according to (1.5) with s > 1 given. Physical 
interpretations of this and the preceding case were pointed out by BL. Namely, 
a bore (hydraulic jump) can be modelled as a supercritical-subcritical transition 
between uniform streams with the same s, the difference rl -r2 > 0 being accountable 
to energy loss in the bore (cf. Lamb 1932, p. 280). A weak, undular bore is explainable 
by an energy loss less than the maximum rl - r2 at its front. Again, a subcritical- 
supercritical transition between uniform streams without energy loss, such as may be 
brought about by a sluice-gate or other obstacle spanning the flow, is represented by 
a vertical jump from the upper to the lower branches of the cusped curve in figure 
1, the difference s1 - s2 > 0 being accountable to the horizontal force holding the 
obstacle in place. Wave-trains generated in the wake of an obstacle inserted into a 
subcritical stream are explainable by a reduction in s less than the maximum s1 - s2, 
which flow-force reduction is commonly termed wave resistance (cf. Lamb 1932, $249; 
Benjamin 1956). 

Now, BL conjectured that all steady two-dimensional irrotational wave motions in 
an open channel, irrespective of amplitude or wavelength, are represented by points 
( r , s )  on or inside the cusped region in figure 1. Thus the unifying property that is 
unequivocal in relation to the original model for small-amplitude long waves was 
guessed to hold generally over the whole class of steady gravity waves. It has been 
proved by Keady & Pritchard (1974), Amick & Toland (1981~) and McLeod (1984) 
that solitary waves can occur only on supercritical streams (i.e. with (Y,s) on the 
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lower branch of the cusp), and so the conjecture can be delimited to periodic waves. 
Attention also needs to be directed, however, to the examples of steady waves with 
subharmonic dependence that have been investigated by Chen & Saffman (1980), 
Vanden-Broeck (1983), Zufiria (19874 and others. 

Support for the BL conjecture was provided by De (1955), who developed approx- 
imations for Stokes waves to fifth order in wave amplitude. All values of r and s 
calculated by him are commensurate with the conjecture, the general truth of which 
has been presumed by many subsequent writers on the subject, notwithstanding that 
details of De’s contribution have been heavily criticized (Chappelear 1961 ; Fenton 
1985; Dixon 1989). Although not presented explicitly in terms of r and s, numerical 
calculations of R and S were reported by Cokelet (1977) which too are confirmatory. 
The conjecture was re-emphasized by Keady & Norbury (1975, p. 669, Conjecture 2), 
who deduced various rigorous bounds for the properties of water waves according 
to ideal-fluid theory. Several of these bounds will be recovered in what follows, 
accordingly their paper will hereafter be cited as KN for convenience, and to a large 
extent their notation will be copied (although r and s here and in BL are R and S 
in KN). It is relevant to cite also Keady & Norbury (1978a), where corresponding 
bounds were cleverly established for surface waves in ideal liquids with prescribed 
distributions of vorticity. Until now, however, the question whether the BL conjecture 
is generally true has remained open. 

The main purpose of the present paper is to verify the conjectured attribute of all 
steady irrotational wave motions in water of finite depth, removing a long-standing 
uncertainty of the subject. In $4 the corresponding general property of steady surface 
waves on water of infinite depth will also be proven. 

2. The problem for periodic water waves 
Take axes ( x , y )  as shown in figure 3, with origin at the horizontal bottom of the 

channel below a trough of a steady periodic wave-train. Let A denote the wavelength. 
Here the scheme of dimensionless variables introduced in $1 is used, according to 
which the volume flux is unity. The free surface is described by 

Y = h b ) ,  

where h is a periodic real function ranging between minimum and maximum values 

h(O)=Vh>O and h(iA)=*h>Vh. 

Treating the water as an incompressible ideal liquid of unit density, we suppose that 
the flow is steady, two-dimensional and irrotational. The complex potential for it is 
written x = 4 + iy, and the complex velocity is w = u - iv = dX/dz, where z = x + iy. 
Thus 4, y ,  u and u are bounded harmonic functions of (x, y) in the strip 

D = R x (O,h(x)). 

The boundary conditions on the stream function y ,  which satisfies A y  = 0 in D, 
include 

y(x,O) = 0 for all x E R (2.1) 

y(x ,h(x) )  = 1 for all x E R. (2.2) 
and 
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FIGURE 3. Half a wavelength of steady wave-train in the (x,y)-plane. 

In addition, Bernoulli's equation at the free surface, assumed to be free of surface 
tension, is 

(2.3) 
where 

q = Iw(x,h(x))l = Ivy1 at y = h(x) .  
Periodic-wave solutions of this problem, such that u = yy > 0 everywhere in D and 
u = -yx > 0 for 0 < x < ;A, 0 c y d h(x),  have been proved to exist (Krasovskii 
1961; Keady & Norbury 1978b). The best known existence theories depend on a 
reformulation of the problem in terms of y(+,y), a harmonic function of (+,y)  in 
the uniform strip R x (0,l) rather than D for (x,y); but this alternative formulation 
has no advantage for present purposes. 

The flow-force invariant for steady waves can be deduced from the expression for 
horizontal momentum flux plus pressure force, namely 

h + - : q 2 - ;  - - r  - - const., 

h 

;s = 1 (u2 +P)dY, 

in which p is pressure. Eliminating p by means of Bernoulli's equation p + y + 
i(u2 + u2)  = ;r,  one obtains directly 

(cf. Benjamin 1984, $6.4, equation (6.8)). In view of (2.3), (2.1) and (2.2), the latter of 
which implies that y x  + y y h x  = 0 at y = h(x),  it is easy to confirm from (2.4) that 
ds/dx = 0. Note that equation (1.2) originally found by BL is obtainable directly 
from (2.4) by substituting y = y / h ( x ) ,  which is justifiable as a first approximation for 
long waves of small amplitude (cf. Benjamin 1984, $6.5). 

The following interdependent properties of steady periodic waves have been checked 
by many authors (e.g. Keady & Norbury 1978b; Amick & Toland 1981b) and will 
be shown in Appendix A to be inferable from a basic, much more meagre set of 
properties. 

(i) The stream function y(x,y), u = yy(x,y) and h(x)  are even functions of x and 
of x - ;A, so that u = -yx(x,y) is an odd function of x and of x - ;A. 
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FIGURE 4. Graphs of w versus y for various values of x over half a wavelength 
of steady wave-train. 

(ii) The maximum and minimum values of Ivy1 occur on the free boundary y = h(x)  
of D, the maximum 4 at the wave trough where y = h(0) = h, and the minimum 4 at 
the crests where y = h( ;A) = h. 

(iii) At the troughs, uy = u, = yyy > 0 for 0 < y < h. At the crests, uy < 0 for 

(iv) Above the bottom y = 0, each of the streamlines y = const. > 0 including the 
free surface y = 1 rises monotonically from its lowest point at x = 0 to its highest 
point at x = ;A. That is, if the streamlines are described by equations y = c ( x ; y )  
parameterized by y E [0,1] (e.g. c(x; 1) = h(x)) ,  then c is a monotonic increasing 
function of x in [0, ;A] for each y E (0,1]. Because yx + yycx = 0 on y = c,  this 
property is subsumed by u = yy > 0 everywhere in D (see (v) below) and u = -yx > 0 
for o < x < ;A, o < y < h(x) .  

(v) Along the bottom y = 0, u is a monotonic decreasing function of x in [0, +A]; 
and u > 0 everywhere in D, except in the case of waves of extreme form for which at 
the crests 4 = 0 and so ĥ = +r .  

Figure 4 illustrates the forms of y as a function of y at successive stations x 
between x = 0 and x = ;A. In the light of properties (iii) - (v), it is evident that 
the curves y = y(0,y) and y = y(;A,y) intersect only at the origin, and the region 
bounded by these curves and the straight line y = 1 is covered injectively by the field 
9 of curves y = y(x,  y) in the (y,y)-plane with x E [0, ;A]. Hence any straight line 
y = ay, where u( ;A, 0) < a < u(O,O), crosses the interior of the region in question and 
is covered by 9 between y = 0 and y = l/a. 

" 

O < y < h .  

3. Bounds for steady waves 
Several of the bounds on wave properties obtained by KN, 93, will first be re- 

constructed, by arguments differing marginally from theirs. Then a new bound will 
be established which is crucial in confirming the BL conjecture. A variable with 
central importance in the present account is the flow velodty along the kottom of the 
channel, to be denoted by U ( x )  := u(x,O) together with U = U(0)  and U = U(;A). 
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PROPOSITION 1. As introduced in $2, let l j  and ;I denote the flow velocity along the 
free surface at the wave crests and troughs, where respectively h = h and h = h. Then 

(3.1) 

h " 

;ih < 1 < ;Ih 

Prooj At the troughs, property (iii) listed in $2 means that yyy(O,y) > 0 for 
y < 0 < h. Hence, because y(0,O) = 0, y(0,h) = 1, yr(O,O) = fi and yy(O,h) = ;I, we 
have 

and 

0 < 1 wyy(O, y)$ - y)dy = -6 + 1, 

which verify the second parts of (3.1) and (3.2). Similarly, the first parts of (3.1) and 
0 

The inequalities (3.1) recover (3.1) in KN, but (3.2) were not used there and will be 
particularly helpful at present. The next result recovers Proposition 1R in KN, p. 666. 

PROPOSITION 2. As defined by (2.3),  the total-head constant r for a periodic wave- 
train satisfies r > 1. If hl and h2 are the depths of the subcritical and supercritical 
uniform streams that have a prescribed r > 1, then 

(3.2) follow from the property wyy(iIz,y) < 0 for 0 < y < h at the crests. 

h2 < h < hl < h. (3.3) 

Prooj Recalling (1.5) or (2.3), we have that the possible depths h of uniform 
streams, for which w = y /h ,  are positive roots of 

r = B(h) ,  (3.4) 

(3-5) 

where 

The graph of W(h)  is shown in figure 5. Note that W(h)  has an absolute minimum 
B(1) = 1 for h > 0, and that h2 < 1 < hl when r > 1. 

B ( h )  = +(2h + hk2). 

According to (3.4) and (2.3), the inequalities (3.1) imply that 

3 ~ f i )  = h + $2 > h + i l j 2  = + y  
2 

= h + ;i j2 > h + i x - 2  = +B(h). (3.6) 

Hence 926) 2 1 implies r > 1. 
Next, because r = W(hl )  = W(h2) by definition of hl and h2, the inequality 

r > B$) included in (3.6) requires h2 < h < hl ,  as is evident from figure 5. Finally, 
because h > h, the inequality ,926) > r in (3.6) requires ĥ > hl ,  which completes the 
demonstration of (3.3). 0 
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FIGURE 5. Graph of B(h)  defined by (3.5). 

FIGURE 6. Graph of a(h) defined by (3.7), with r > 1. 

The next result, which recovers Proposition 2 in KN, p. 668, refers to the function 
a defined by 

i a (h )  = i rh  - lh2 2 + Ih-1. 2 (3.7) 
According to (2.4) or to (lS), a(h) is the flow-force constant s for uniform streams 
with a prescribed r > 1; and (3.4) implies that o’(h1) = 0 and a’(h2) = 0. The graph 
of a(h) for h > 0 is shown in figure 6, which makes plain that a(h2) < a(h1) when 
r > 1. 

PROPOSITION 3. Let s2 = a(h2) denote the value of s for the supercritical unform 
stream with given r > 1. Then, for periodic waves with this r ,  

s > s2. (3.8) 

Proof: Evaluate the expression (2.4) for s at the wave troughs, where vx(O,y) = 0 
for all y E [O,vh], and note that 
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in consequence of 

Thus (2.4) shows that 

s > C T < h ) ,  

whence (3.8) follows from (3.3), specifically from hZ < h < hl, and from the form of 
0 CT illustrated in figure 6. 

The crucial new bound can now be established as follows. 

PROPOSITION 4. Let s1 = a(h1) denote the value of s f o r  the subcritical uniform stream 

s < s1. (3.9) 

with given r > 1. Then, f o r  periodic waves with this r ,  

ProoJ: Because U ( x )  and h(x)  are continuous functions, respectively monotonic de- 
creasing and monotonic increasing on [0, ;A], the inequalities (3.2) imply the existence 
of a number ji- E (0, ;A) such that 

U h =  1, (3.10) 

where U = U(k) and h = h(%). Consid$r the haryonic function y - U y ,  which is 
zero along the bottom y = 0. Because U > U > U ,  this function is positive for all 
y E (O,vh] at a wave trough and negative for all y E (O,^h] at a crest. Consequently, a 
path r on which y - U y  = 0 exists traversing D from (X,O) to the free surface. Let 
us provisionally take r to be described by x = X + ( ( y )  with <(O) = 0: that is, 

W(X + ( ( Y ) , Y )  = UY o n r .  (3.11) 

Supposing this path to reach the free surface y = 1 at y = h, we infer from (3.11) 
that U h  = 1 and so h = f i  because h is a monotonic function on [0, ;A]. Therefore 
( ( h )  = 0. Thus the path r begins and ends at x = X, although presumably deviating 
from x = z for o < y < k. 

Differentiation of (3.11) gives 

w y  +YXt’(Y) = U o n r ,  (3.12) 

which shows It’(y)I to be bounded on [O,h] because yx > 0 for 0 < x < ;A and 
y > 0. Thus the function ( ( y )  is confirmed to be single-valued, and a parametric 
representation of r is unnecessary. Note also that, on y = 0, we have yyv = -yXx = 
u, = 0, yxy = -uy = U, and yxyy = -uyy = u, = 0. Hence, as y 1 0 along r ,  

Wy@ + t ( Y ) , Y )  = U + U X ( % O ) 5  + 0 ( Y 2 ) ,  

W x ( X  + < ( Y ) , Y )  = UX(%O)Y + 0 ( Y 3 ) .  

It follows from (3.12) that “ (0)  = 0. 
Now, because A y  = 0 in D, the line integral 
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is zero around any closed circuit in D. The expression (2.4) for s can therefore be 
recast in the version 

(3.13) 

which the aforementioned principle implies to be equivalent to the original version of 
(2.4) with the integral over the cross-section at x = X. As dx = <’(y)dy along r ,  the 
integral in (3.13) is 

s,; { yy” - w: + 2 Y ) x Y y S ’ ( Y ) )  dY, 

which upon substitution for tpxl’(y) from (3.12) becomes 

(3.14) 

Here (3.10) is used finally. 
Equation (3.13) and the inequality (3.14) establish that s < o(h), where o is defined 

by (3.7). Hence, in view of h2 < ‘2 < h, the form of o illustrated in figure 6 implies 
0 

It has been proved that all steady periodic waves in a uniform horizontal channel 
have the property s2 < s < s1 for a given r > 1; and thus the BL conjecture is 
confirmed. Needless to say, this conclusion covers the corresponding property that 
rl < r < 7-2 for a given s > 1, where r1 and 1-2 are the respective values of r for 
the subcritical and supercritical uniform streams with this s. Either property is 
tantamount to the statement that all possible values of r and s characterizing steady 
periodic waves lie inside the cusp-bounded region of the (r,s)-plane shown in figure 
1. Equivalently, in terms of the discriminant 

d := 3r2s2 - 4(r3 + s3) + 6rs - 1 

of the cubic C(h)  defined by (1.3), the present conclusion amounts to d > 0 for all 
steady periodic waves, whereas A = 0 for all uniform streams. 

It remains to mention solitary-wave solutions of the water-wave problem, which 
are most conveniently treated with the origin of x relocated below the wave crest. 
Modelled as a steady motion, any solitary wave has by definition the same r and 
s as the uniform stream to which the flow is asymptotic as x -+ fco; and this 
uniform stream is known to be always supercritical (Keady & Pritchard 1974, p. 348, 
Proposition 1; Amick & Toland 1981~;  McLeod 1989). Thus the class of solitary 
waves with all possible amplitudes is represented by points ( r ,  s) on the lower branch 
of the cusped curve in figure 1. 

that s < a(h1) as required. 

4. Waves on water of infinite depth 
Uniform streams of large but finite depth correspond to points far along the upper 

branch of the cusped curve in figure 1, and periodic Stokes waves on deep water 
are represented within a narrow neighbourhood below this branch in the (r ,  s)-plane. 
According to their original definitions, however, Q, R and S are all unbounded in the 
limit of infinite depth, and so the properties of steady waves on deep water deserve 
an alternative representation as follows. 
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Take axes (x ,y )  with origin in the free surface, x horizontal and y upwards. (Here 
these variables and the dependent variables will not be made non-dimensional.) For 
steady waves, such that the velocity in the water is (u , v )  = (c,O) at y = -00, the 
equation of the free surface is 

Y = ?(X), (4.1) 

where q is a periodic real function depending on the velocity parameter c > 0 and 
having zero mean value. The steady wave motion is represented by a stream function 
Y ( x ,  y )  such that u = c + Yy  and so satisfying the kinematic free-surface condition 

cq(x)  + Y(x ,q (x ) )  = 0 V X  E R, (4.2) 

together with 

and 
AY = 0 in R x (-co,q(x)) 

IVYyI-+O as y-+-00. 

(4-3) 

(4.4) 

(Note that equivalently Y (x + ct, y )  is the stream function for waves propagating 
with velocity c in the -x-direction on water that is stationary at infinite depth.) The 
dynamical free-surface condition (Bernoulli's equation) is 

gq + ;[(c + Yy)2 + Y,'] = $2. (4.5) 

Equations (4.2)-(4.5) are satisfied trivially by null functions for q and Y ,  correspond- 
ing to which the unperturbed free surface is the x-axis. 

It must be emphasized that the asymptotic condition (4.4) does not require Y 
to vanish in the limit y + -00. In fact, as is well known from a slightly different 
standpoint, we have 

y-t-'X lim Y ( x , y ) = A > O  V X E R ,  (4.6) 

where the positive constant A is just the net volume flux induced by a progressive 
wave-train on water that is at rest in the limit y + -m (i.e. A is the drift originally 
estimated by Stokes 1847). 

The flow-force invariant for steady waves on water of infinite depth was first noted 
by Benjamin (1984, p.45, equation (6.9): see also Baesens & MacKay 1992). It is 
given by 

rn 

(4.7) 

from which one can easily confirm that dY/dx = 0 when q and Y satisfy (4.2)-(4.5). 
Reconsidering the problem of steady waves on water of finite depth, and writing 
H = H I  + q, w = c(y + H 1 )  + Y ,  one may also confirm that 

Y = lim (S - S1), 
Hi -+a 

where S is the flow force for waves with total head R = gH1 + ic2 and S1 is its value 
for the corresponding uniform (subcritical) stream. 

For the case of small-amplitude waves, (4.2)-(4.5) are satisfied by 

q = E cos kx, Y = -cEelklY cos kx, 
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FIGURE 7. Graphs of @ versus y for various values of x over half a wavelength of steady 
wave-train on deep water. 

where E is infinitesimal and k E R \ (0). Hence, when approximated to O ( E ~ ) ,  (4.7) 
recovers the well-known result 

y=-i  &2 

(Lamb 1932, §249), regarding which it should be recalled that -9' > 0 is wave 
resistance as usually defined. For infinitesimal waves, moreover, the classic estimate 
of Stokes drift is A = $ks2c (cf. Lamb 1932, p.419, equation (16)). 

Periodic waves on infinitely deep water, irrespective of wave amplitude, are known 
to have respective versions of the properties listed at the end of $2, and these basic 
properties will be taken for granted. In particular, writing as before x = 0 at a wave 
trough and x = $A at the next crest, we have that ~ ( x )  is a monotonic increasing 
function of x E [O,$L] from ~ ( 0 )  = 6 < 0 to ?(;A) = f i  > 0. We also have that 
u = c + Y, is a monotonic decreasing function of x E [0,44 at all depths, and that 
v = -Yx > 0 at all depths for 0 < x < 42. Furthermore, u,,(O,y) = Y,,,,(O,y) > 0 for 
y E (-a,$, and u,,($A,y) < 0 for y E (-a,fi]. 

To illustrate these properties, graphs of Y ( x , y )  against y at various stations x 
between 0 and $A are sketched in figure 7. The figure makes plain that, in the 
( y ,  Y)-plane, the straight line Y = A for y E (-a,O] passes through the interior 
of the field 9 of curves Y versus y parameterized by x E [0, $4, all of which are 
asymptotic to Y = A as y + -a. Specifically, the graph of Y ( 0 , y )  curves upwards 
above Y = A for -a < y < 6, and the graph of Y ( $ A , y )  curves downwards below 
Y E A for -a < y < 4. Moreover, because Y x  < 0 everywhere inside the region 
bounded by the curves Y = Y(O,y) ,  Y = Y ( 4 1 , y )  and the straight line Y = -cy 
representing the free surface, the line Y = A is covered injectively by the field 9. 

Our principal deduction about the present form of the water-wave problem can 
now be stated. 

PROPOSITION 5. For all periodic waves on water of infinite depth, irrespective of am- 
plitude f i  - + > 0, the$ow-force invariant Y dejined by (4.7) satisfies 

4g 

Y < 0. (4.8) 

Prooj The properties listed above imply that there is a station X E (0,;A) such 
that Y(n,q(X)) = A > 0, and consequently ij := V(X) = -A/c  E ( + , f i )  according to 
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(4.2). This X is unique because q is a monotonic increasing function over the interval 
(0, i n ) .  Evaluating (4.7) at x = X, one has 

y=-1 2 g r  - 2  + 11 i P ; ( % Y )  - y:(%Y))dY. (4.9) 

For the same reason as used to derive (3.13) from (2.4), the integral in (4.9) is 
equivalent to a line integral along the path r described by x = 2 + <(y), where 5 is 
determined by satisfying ((4) = 0, <(-a) = 0 and 

Y(X + <(y),y) = A for - co < y < i j .  (4.10) 

Thus we infer 

(4.11) 

The properties affirmed above with reference to figure 7 ensure that the path r is 
well defined, for it is equivalent to the straight line Y = A in the (y, Y)-plane. In 
particular, differentiation of (4.10) shows that 

Yy  + Yx5'(y) = 0 on r , (4.12) 

implying that < : (-00, i j )  --+ R is a single-valued function because Y x  < 0 everywhere 
on r .  

By use of dx = <'(y)dy and then (4.12), it follows immediately from (4.11) that 

and thus (4.8) is confirmed. 0 

For periodic waves on infinitely deep water the inequality (4.8) is, of course, the 
counterpart of (3.9) for waves on water of finite depth. It too appears to be proven 
here for the first time. 

5. Discussion 
5.1. Amplitude dependence 

The BL conjecture has been vindicated without need to examine how wave amplitude 
and wavelength depend on r and s within the admissible region of the (r,s)-plane. 
However, several facts about this aspect are worth recalling here. 

For long steady waves of small amplitude, represented by very small values of 
r - 1 > 0 and s - 1 > 0, the approximation (1.2) becomes reliable and according to 
it the range of possibilities is easily inferable, as has already been summarized in $1. 
Namely, for fixed r > 1, wave amplitude and wavelength increase monotonically as 
s is reduced from s1 to s2 < s1. Periodic waves become infinitesimal as s t s1, and 
in this limit their wavelength 1 = 2-n/ Ikl is determined by the well-known dispersion 
relation Ff = (tanh Ikl h l ) /  Ikl hl = 1 - fk2h: +O(k4h4)  with Ff = h,3 < 1. In the other 
limit s 1 s2, one has 1 --+ co and the solitary-wave solution of (1.3) has amplitude 
?I - h2 = hy2 - h2 = h2(F,2 - l), which is the maximum possible for the given r > 1. 

In the light of the general results established in $3, it can be inferred that this 
ordering of the possibilities remains qualitatively unchanged until r is raised to values 
marginally less than its value for the solitary wave of extreme form (i.e. r = 1.031 
approximately). Schwartz (1974), Longuet-Higgins (1975), Cokelet (1977) and others 
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have shown, however, that gross properties of steady waves, such as r and s, have 
turning points in respect of dependence on amplitude a little way short of reaching 
waves of extreme form (whose crests are stagnation points). 

It was suggested by BL that the (r,s)-chart of possible steady waves might be 
completed by a third barrier representing waves of extreme form. But, for the reason 
just noted which is a more recent finding, realizable points ( r , s )  in fact lie on either 
side of this locus. The ( r ,  s)-chart of possibilities nevertheless includes such a barrier, 
shown as a dashed line in figure 1, which is close to the locus of extreme, sharp-crested 
waves and to the right of which no steady wave exists. 

5.2. Bijiircated steady waves 
It has been known for the last 15 years that the problem of steady water waves has 
solutions other than Stokes waves. Subsequent to the original discoveries reported 
by Chen & Saffman (1980) and Saffman (1980) as regards waves on deep water, 
many other authors have contributed to this aspect of the steady-wave problem (e.g. 
Vanden-Broeck 1983; Longuet-Higgins 1985; Zufiria 1978a,b; Baesens & MacKay 
1992). The phenomena in question arise upon waves of large amplitude, in the 
range where the class of Stokes waves becomes parametrically multivalued: more 
specifically, where the relation between amplitude and two other parameters - such 
as ( r , s )  for waves on water of finite depth - undergoes turning points. 

These phenomena are best understood by treating the steady-wave problem some- 
how as an evolutionary system with the horizontal coordinate x in the role of time (cf. 
Kirchgassner 1988). From this viewpoint, the simple representation of possible solu- 
tions h(x)  illustrated in figure 2 with reference to long waves of small amplitude can 
be reckoned to remain qualitatively the same for waves of moderate amplitude, but to 
be replaced by more complicated behaviour when a fold appears in the solution set. 
Then period-doubling can occur, which breaks the symmetry of Stokes waves about 
both their crests and troughs, and which is representable in the standard way as a flip 
bifurcation of the Poincark return map for one Stokes-wave period (Guckenheimer 
& Holmes 1983, 53.2). Period-tripling and various other, more intricate possibilities 
also appear to arise, the most thorough account of which so far has been given by 
Baesens & MacKay (1992) for steady waves on deep water. Needless to say, these 
symmetry-breaking bifurcations from the Stokes class of steady waves are closely 
linked with time-dependent stability properties of the steady waves in question; but 
no comment on this aspect will be made here. 

The device of formulating the steady two-dimensional water-wave problem as 
a dynamical system in respect of x -dependence is admittedly artificial, because 
the underlying field equation - Laplace’s equation - is elliptic and so any such 
evolutionary system is ill-posed on any open set of initial data. The formulation 
can well be rationalized, however, by a presumed restriction of its scope to a finite 
centre manifold of solutions that are bounded on R, including Stokes waves whose 
existence is provable otherwise and also including uniformly bounded perturbations 
of this basic class of periodic solutions (for a full discussion, see Kirchgassner 
1988, Ch. VI). Indeed, this rationale is imperative to a neat theoretical explanation 
of symmetry-breaking bifurcations from Stokes waves, which were first detected 
numerically. 

Representations of the steady water-wave problem in Hamiltonian form have been 
found by Mielke (1991) for the case of finite depth and by Baesens & MacKay 
(1992) for the case of infinite depth, being particularly useful in accounting for 
the bifurcations of steady waves. They exemplify a general recipe that was noted 
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by Benjamin (1984, 94.4) to give a Hamiltonian structure to steady-wave problems 
governed by elliptic equations. The flow-force invariant is in the case of finite depth 
(or Y for infinite depth) is always the Hamiltonian function in such representations, 
a few details of which will be summarized in Appendix B. 

5.3. Values of ( r , s )  for bijiurcated steady waves 
Finally, to supplement the foregoing vindication of the BL conjecture, it will be 
argued that all possible subharmonic bifurcations from Stokes waves correspond to 
folds, perhaps multiple ones, within the cusp-bounded region of the ( r ,  s)-chart shown 
in figure 1. That is, any such steady wave has s2 < s < s1 for its respective r > 1. 

At first sight the inequality s2 < s is the more suspect in this connection, because 
there exist long periodic waves of large amplitude with ( r ,  s) arbitrarily close to, 
although distinct from, the lower branch of the cusp in figure 1. Such waves are 
virtually a periodic succession of solitary waves near to extreme form, and they 
appear to be subject to symmetry-breaking bifurcations (Zufiria 1987~) .  

A revision of the proof of Proposition 3 in 93 covers all such possibilities. At a wave 
trough, say at x = 0 as in 93, we still have hx(0) = 0 and therefore ~ ~ ( 0 ,  h(0)) = 0 
by (2.2). As the Z 2  symmetry of the motion relative to the troughs may be broken, 
however, it can no longer be claimed that yx(O,y)  = 0 for 0 < y < h(0) = ‘2. A 
transverse path r can nevertheless be found, described by x = < ( y )  for y E [0,’2] with 
((’2) = 0, such that 

wx = O  and vxx d 0 o n r ,  
i.e. 

Thus r is composed of points at which streamlines tp = const. E (0,1] have minimum 
heights. It is evident, moreover, that 

YX(t(Y),Y) = 0 and YXX(t(Y),Y) < 0 V Y  E [O,Jd. (5 .1)  

YXX(t(Y), Y )  < 0 a s .  on (0,’21, ( 5 4  

because otherwise (with equality in the second of (5.1) over any part of (O,h] having 
finite measure) the harmonic function y would have an interior plateau, which is 
impossible. 

The definition (5.1) of r implies that 

YXXt’(Y) + Yxy = 0 o n r .  (5.3) 

Also, if f ( Y )  := W ( t ( Y ) ,  Y ) ,  then 

f’b) = YXt’(Y) + Yy = Yy on r ,  
and by (5 .1)  together with (5.3) 

f ” ( Y  1 = YXt”(Y) + 2YXYt”Y 1 + w y y  + Yxx [t’(Y )I2 
= -{[t’(Y)12 + l > w x x  o n r  

> o a.e. for o < y < ‘2. (5.4) 

Because f(0) = O,f(iz) = y(0,h) = 1 and f’$) = yy(0,’2) = 4, we infer from (5.4) 

0 < f f ” ( y ) y  dy = 4’2 - 1, (5.5) 

which generalizes the first of the inequalities (3.1). 
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that in the present case too 

which generalizes the first of the inequalities in (3.3). 

recast in its equivalent form 

By use of (5.5) in the definition (2.3) of r compared with ( 3 3 ,  it follows at once 

h2 < h < hl,  (5.6) 

Next, by the reasoning already exemplified in 93, the definition (2.4) of s can be 

(Note that an integral along the bottom y = 0 completes the equivalence with the 
integral over the cross-section at x = 0 as in (2.4), but the integral along the bottom 
is obviously zero.) In view of (5.4), the boundary conditions on f and then (5.5), the 
preceding expression implies that 

i s  > irk - 1'22 2 + ~ h - 1  2 = I 2 06). (5.7) 

Hence (5.6) and the form of 0 illustrated in figure 6 establish that s > s2, as required. 
As regards the complementary inequality s < s1 for bifurcated steady waves, an 

adaption of the proof of Proposition 4 in 94 is straightforward. An outline will suffice 
here. First, the reasoning used to establish the inequality f h  < 1 in (3.2), now referred 
to the function fN(y) which is positive on (O,h] according to (5.4), shows that U ( x )  
still takes a value fi < l /h somewhere under a wave trough - although now perhaps 
not exactly under. Moreover, by the definition of the path r ,  the value fi is still 
the maximum of U ( x ) ,  so that U 2 U(0)  > 0. In consideration of a transverse path 
along which yx = 0 under a wave crest, a similar argument shows that U ( x )  still 
takes a minimum value 0 > l/̂ h somewhere under the crest. It follows that a number 
X must still exist such that U(X)h(jl) = 1, and hence Proposition 4 can be proven in 
the same way as before. We can thus conclude that no bifurcated steady wave-train 
exists beyond the scope of the BL conjecture. 

I am indebted to Dr G. Keady and to Professor J.F. Toland for constructive 
comments on the first draft of this paper. 

Appendix A. Deduction of properties of Stokes waves 
We start from the basic properties illustrated in figure 3,  namely ( a )  h and y are 

periodic in x with period I ,  (b )  the horizontal bottom y = 0 is the streamline y = 0, 
(c) the free surface y = h(x)  is the streamline y = 1, ( d )  By = 0 in the flow domain 
D, ( e )  the vertical velocity -yx = 0 for x = 0 and x = ;A, and v) the vertical velocity 
-yx > 0 for all (x,y) E (0, $2) x (0, h(x)] = D', say. Further properties including 
those listed at the end of 92 are deducible as follows by the maximum principle and 
Hopf's boundary-point lemma for harmonic functions (Gilbarg & Trudinger 1977, 
p.33, Lemma 3.4). 

1. Being harmonic, y takes its maximum and minimum values on the boundary of 
D', at points where the outward normal derivative of y is respectively positive and 
negative. Because yx = 0 for x = 0, $A, the maximum and minimum are at the free 
surface and the bottom respectively. Hence 0 < y < 1 in the interior of D'. Moreover, 
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because the maximum y = 1 is attained at every point of the free surface, it follows 
by Hopf‘s lemma that y y  > 0 everywhere on the free surface, except in the case of 
waves of extreme form when the crest is a stagnation point. Similarly, y y  > 0 on the 
bottom, where the minimum y = 0 is attained at every point. 

2. Being harmonic, yy takes its minimum value on the boundary of D’, at a point 
where its outward normal derivative is negative. Hence, because yyx  = 0 for x = 0, tj, 
and yy 2 0 on the other boundaries of D’, it follows that yy > 0 in the interior of D . 
Thus the horizontal velocity component u = y y  is shown to be positive everywhere 
in the flow domain, except at the crest in the case of waves of extreme form. 

3. Because the harmonic function y x  is given to be negative in the interior of D’, 
and y x  = 0 on the bottom and for x = 0, ;A, Hopf‘s boundary-point lemma implies 
that 

yyy = -yxx > 0 for x = 0, 
yyy = -yXx < o for x = ;A, 

and 
y = 0, o < x < ;A. 

These inequalities confirm (iii) and the first part of (v) in $2. 
4.  That every streamline y = const. > 0 rises monotonically from its lowest point at 

x = 0 to its highest point at x = !A follows at once from the inequalities yx < 0 < y y  
in the interior of D’ (cf. (iv) in $2). 

5. Property (ii) in $2 follows from Hopf‘s lemma referred to the function 4; + $, 
which is superharmonic in D’ and whose normal derivative on the boundary of D’ is 
non-zero only at the free surface. 

yxy < O for 

Appendix B. Hamiltonian formulations 

the flow-force equation (2.4). Thus, writing P := -yX,  we get from (2.4) 
A rudimental version may be recognized from the first (infinitesimal) variation of 

ik = { + r  - h 4- ;(Y; - P2),,h)h + (yYqy - PP)dy. (B 1) I I  
As y(x,  0) = 0 and y(x ,  h(x) )  = 1 V x E R, these conditions require 

@(x,O) = 0, @(x, h(x) )  + yy(x,  h(x))h  = 0. 

Hence an integration by parts and imposition of the dynamical condition (2.3) at the 
free surface reduce (Bl) to 

h 

(B 2)  3 .  
3s = - 1 ( v y y @  + P W y .  

Thus Laplace’s equation for y in D has the formal Hamiltonian representation 

Here the variational derivatives of i s  subject to the condition at y = 0 and the two 
conditions at y = h(x)  are inferrred from (B2) in the standard way. This version of 
the Hamiltonian formalism is somewhat equivocal, however, because the upper limit 
h(x)  of the integrals in (2.4) and (B2) is part of the overall solution. 

When y is taken as the dependent variable and (x, y )  as the independent variables, 
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a rather more clear-cut Hamiltonian structure is obtained, although at the expense 
of a more complicated elliptic equation controlling the centre manifold. Writing 
y = y (x ,  y ) ,  so that y(x,O) = 0 and y (x ,  1) = h(x),  we deduce that the velocity 
components are given by 

(B 4) 

(cf. Benjamin 1966, equations (3.2)), and this representation of them is well defined 
because we know that y ,  > 0 everywhere in R x [0,1]. The theory of implicit functions 
also tells us that, for y = const., 

Y x  , v = -  
Y V  Y ,  

1 u = -  

1 2  

y ,  
Y x x  = - y ( Y , Y x x  - 2YxY,Yx, + Y,2Y,,), 

and, for x = const., -('> 1 =-(-> 1 1  
VYY = 

Y ,  Y ,  lp 2 y ,  , 
Hence the condition of zero vorticity, A y  = 0, is equivalent to 

(cf. Benjamin 1967, equation (3.3)). 
In the new variables, (2.4) can be rewritten 

where P := -yx/y ,  is the first derivative of the integrand in (B6) with respect to yx,  so 
being the generalized-momentum variable for the present Hamiltonian formulation. 
Differentiating (B7) with respect to x, then integrating by parts and applying the 
dynamical boundary condition (2.3), which now takes the form 

one can readily reconfirm from (B7) that ds/dx = 0 when y ( x , y )  satisfies (B5), which 
is equivalent to 

A(L) +PP,+Px=O. 
y; , 

The first variation of (B7) is 

Hence, because j(x, 1) = h(x), an integration by parts leads to cancellation of the 
integrated terms by virtue of (B8) and the outcome is 

ig=I' [{ (4) y ,  , + P P , } y - y , P P ]  dy. 
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The variational equation (B10) shows that 

-Y,P = Yx, - 3 6s 
2 6 P  
-- - 
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if y satisfies (B9). Thus a canonical Hamiltonian structure is demonstrated for the 
x-dependent quasi-evolutionary problem in terms of the pair of variables ( y ,  P ) ( x ,  v, ), 
which are defined on the fixed domain R x [0,1] and are required to satisfy y = P = 0 
on v, = 0 together with the Bernoulli equation (B8) on v, = 1. Again +s is the 
Hamiltonian functional, of (y,P) rather than of ( y , P )  as before. But the present 
Hamiltonian representation is evidently clearer than the previous one in that the 
integrals in (B7) and (B10) are over a fixed interval. 
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